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ABSTRACT

A newly developed, weakly coupled land and atmosphere data assimilation system for NASA’s Global

Earth Observing Systemmodel is presented, and used to demonstrate the benefit of assimilating satellite soil

moisture into an atmospheric reanalysis. Specifically, Advanced Scatterometer and Soil Moisture Ocean

Salinity soil moisture retrievals are assimilated into a system that uses the same model, atmospheric assim-

ilation system, and atmospheric observations as the Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2). The atmosphere is sensitive to soil moisture only under certain con-

ditions. Hence, while the globally averaged model improvements were small, regionally, the soil moisture

assimilation induced some substantial improvements. For example, in a large region spanning from western

Europe across southern Russia, the soil moisture assimilation decreased the RMSE against independent

station observations of daily maximum 2-m temperature (T2m
max) by up to 0.4 K, and of 2-m specific humidity

(q2m) by up to 0.5 g kg21. Over all available stations, the mean T2m
max RMSE was reduced from 2.82 to 2.79K,

while the mean q2m RMSE was reduced from 1.25 to 1.20 g kg21. The soil moisture assimilation also reduced

the mean RMSE across 29 flux tower sites from 34.2 to 32.6Wm22 for latent heating, and from 37.7 to

36.5Wm22 for sensible heating. For all variables evaluated, the soil moisture assimilation improved the

model at monthly to seasonal, rather than daily, time scales. Based on the above experiments, it is rec-

ommended that satellite soil moisture be assimilated into future reanalyses, including the follow-on to

MERRA-2.

1. Introduction

By limiting the amount of water available to plants

for evapotranspiration, soil moisture can control the

partitioning of incoming radiation at the land surface

into latent heating (or evapotranspiration) and sensible

heating. Consequently, soil moisture can have a pro-

found impact on the evolution of the boundary layer,

particularly during the warm seasons when incoming

radiation and evapotranspiration are largest (Betts

2009). Soil moisture anomalies typically persist much

longer than atmospheric anomalies, giving anomaly

decay time scales of around 1–3 months (Vinnikov

et al. 1996; Entin et al. 2000). These relatively long

decay time scales enhance the impact of soil moisture

on the atmosphere, and various studies have shown that

the soil moisture initialization in weather and climate

models can improve forecast skill across a range of time

scales. For example, such improvements have been

reported in forecasts of days 1–3 (Dirmeyer and

Halder 2016) and days 1–9 (Drusch and Viterbo 2007),

as well as in subseasonal to seasonal forecasts of

45 days (Koster et al. 2010) and 56 days (van den Hurk

et al. 2012).

Despite the importance of soil moisture to the at-

mosphere, the model soil moisture in NASA’s current

Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2; Gelaro et al. 2017)

is not directly constrained with observations. The aim of

this study is then to develop a land data assimilation

system for potential use in NASA’s future reanalyses,

and to test whether such a land data assimilation can

improve the modeled soil moisture and atmospheric

states in NASA’s future reanalyses. The focus is on

improving both the land and the atmosphere, since

NASA’s next reanalysis will be an integrated EarthCorresponding author: Clara Draper, clara.draper@noaa.gov
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system reanalysis. In the current study, we have coupled an

ensemble Kalman filter (EnKF) for land data assimilation

to the MERRA-2 atmospheric data assimilation system.

We have then used the coupled land–atmosphere data

assimilation to test the impact of assimilating Advanced

Scatterometer (ASCAT) and SoilMoistureOcean Salinity

(SMOS) soil moisture retrievals into a system that uses the

same model, atmospheric assimilation, and suite of atmo-

spheric observations as MERRA-2. Below, the current

state of land data assimilation within the context of at-

mospheric modeling is briefly reviewed, to place the cur-

rent study in context, and to justify the chosen land data

assimilation design and approach.

Currently, there are two main data assimilation ap-

proaches used to constrain model soil moisture in at-

mospheric modeling and assimilation systems. The first

approach, used bymost NWP centers outside theUnited

States, as well as in NOAA’s regional Rapid Refresh

system, is to constrain model soil moisture (and soil and

surface temperatures) with observations of air temper-

ature and relative humidity at the 2-m screen-level

height (Mahfouf 1991; Hess 2001; Bélair et al. 2003;

Rodriguez et al. 2003; Dharssi et al. 2011; de Rosnay

et al. 2013; Benjamin et al. 2016). The idea behind as-

similating the 2-m observations is (i) if the modeled land

surface is too warm and dry, then latent heating will be

underestimated and the sensible heating will be over-

estimated, leading to underestimated 2-m relative hu-

midity and overestimated 2-m temperatures; and (ii) these

forecast errors can be reduced by adjusting the initial

soil states accordingly.

The screen-level observations are most often as-

similated at NWP centers using a simplified extended

Kalman filter (EKF) or optimal interpolation, although

Environment Canada is using an EnKF in their high-

resolution regional system (Milbrandt et al. 2016). In

each case, the land data assimilation is ‘‘weakly coupled’’

to the atmospheric assimilation, in that the land and at-

mospheric data assimilation are performed in parallel,

and do not directly share information (i.e., observations

or error covariances), except via their influence on the

subsequent forecast cycles. Since the land surface models

used in NWP systems simulate each grid cell inde-

pendently from its neighbors, the land assimilation

is also performed independently at each model grid

cell (i.e., horizontal error correlations are neglected).

While assimilating screen-level observations has been

shown to improve near-surface forecasts, in many cases

this is achieved while degrading the modeled soil

moisture (Hess 2001; Drusch and Viterbo 2007; Draper

et al. 2011; Carrera et al. 2019), which is effectively tuned

to compensate for errors elsewhere in the model (e.g., in

the radiation or surface physics).

The second approach is to assimilate satellite obser-

vations of near-surface soil moisture. This is the ap-

proach being tested in this study, since it avoids the

potential negative impact on model soil moisture of as-

similating the screen-level observations, and also takes

advantage of the near-global coverage of the relevant

satellites.Within theNWPcommunity, theMetOffice and

ECMWF assimilate ASCAT near-surface surface soil

moisture, in addition to the screen-level observations dis-

cussed above (Dharssi et al. 2011; de Rosnay et al. 2013;

Candy et al. 2017). In both cases, theASCATobservations

are assimilated using the same simplified EKF used to

assimilate screen-level observations. A major difficulty of

assimilating satellite soil moisture is that the observations

relate only to a near-surface (1–5cm) layer, while it is the

much deeper (surface to 0.5–1.0m) root-zone soilmoisture

that exerts the most control over evapotranspiration. At

ECMWF, the increments in the deeper soilmoisture layers

from assimilating the satellite soil moisture are small

(much smaller than the increments from assimilating the

screen-level observations), and the ASCAT assimilation

has a neutral impact on the model root-zone soil moisture

skill (de Rosnay et al. 2013). Evaluation statistics have not

been published for the current Met Office soil moisture

assimilation scheme, although an earlier version (by design)

had a very limited impact on the root-zone soil moisture

(Dharssi et al. 2011). ECMWF’s ERA-5 (Hersbach and

Dee 2016), currently in production, will be the first global

atmospheric reanalysis to assimilate satellite soil moisture

information. Specifically, soil moisture retrievals from

ASCAT and its predecessors are being assimilatedwith the

simplified EKF, again alongside the screen-level observa-

tions (J. Muñoz-Sabater 2018, personal communication).

Satellite soil moisture assimilation is also being

pursued by the hydrology community, using offline

(i.e., stand-alone) land surface models (LSMs). The

hydrology community generally favors the EnKF over

the EKF-type approaches used at NWP centers because

the EnKF is much more flexible, while also being

somewhat less vulnerable to the strong nonlinearities of

land surface models. Using offline LSMs, the EnKF as-

similation of near-surface soil moisture has been shown

to improve simulated near-surface and root-zone soil

moisture temporal anomalies (Draper et al. 2012; De

Lannoy and Reichle 2016) and simulated latent heat-

ing (Peters-Lidard et al. 2011).

Comparisons of the EKF and EnKF assimilation of

soil moisture suggest that their performance is very

similar, with the EnKF producing slightly better results

(Reichle et al. 2002;Muñoz Sabater et al. 2007; Fairbairn
et al. 2015). Most NWP centers are using the simplified

EKF-type approaches as they are computationally

cheaper. The major computational cost for both schemes
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is associated with the additional forecast model integra-

tions required. For the simplified EKF, the tangent linear

of the forecast model is required, necessitating an addi-

tional forward integration over each assimilation cycle for

each state variable in the update vector (e.g., four total

integrations for a three-state soil moisture vector). For

the EnKF, the number of additional forward integrations

is determined by the ensemble size. However, the land

surface does not experience chaotic error growth, and

relatively small ensemble sizes of 20–30 are generally

considered sufficient (Peters-Lidard et al. 2011; Carrera

et al. 2015; De Lannoy and Reichle 2016).

An EnKF was chosen for NASA’s land data assimi-

lation scheme, as it offers greater flexibility for future

development. In particular, additional variables can be

easily added to the state vector, the description of the

model errors is more intuitive and flexible, and cross-

correlated background errors (between different state

variables, and/or across space) can be accounted for.

Several of the EKF-based land data assimilation sys-

tems used in NWP (Bélair et al. 2003; Rodriguez et al.

2003; Dharssi et al. 2011) use an offline LSM for the

additional model integrations required by the EKF.

The same approach is used here for the EnKF, in that

the ensemble of land surface states required by the

EnKF are produced using an ensemble of offline

LSM integrations, forced by atmospheric fields from

the most recent atmospheric assimilation cycle.

The above two approaches both directly update the

modeled soil moisture states with observations through

data assimilation. Another, less direct, approach to in-

troducing observed information into the modeled soil

moisture is to correct the model-generated precipitation

with observations. In both the MERRA-2 and Climate

Forecast System, version 2 (Saha et al. 2014), reanalyses,

the model-generated precipitation is corrected toward

observations immediately before entering the land sur-

face (Saha et al. 2010; Reichle et al. 2017b). Precipita-

tion is the main driver of soil moisture dynamics, and as

would then be expected, correcting the precipitation

with observations inMERRA-2 improves themodel soil

moisture (Reichle et al. 2017a), with strong evidence

that this in turn improved the simulated surface fluxes

and daily maximum 2-m temperatures (T2m
max; Draper

et al. 2018). While the use of observed precipitation

clearly improves modeled soil moisture, this approach is

limited in that it addresses only precipitation-related soil

moisture errors. It also relies on high quality daily pre-

cipitation observations, which are not available in many

regions. In particular, Africa, South America, and the

tropics have sparse rain gauge networks. Since it is

clearly beneficial, the use of the precipitation correc-

tions has been retained in the current study.

2. Methods and data

a. Experiment outline

Two pairs of assimilation experiments were per-

formed to test the benefit of assimilating the satellite

soil moisture observations, as outlined in Table 1. The

first and main pair of experiments was designed to test

the impact of assimilating satellite soil moisture ob-

servations into the Goddard Earth Observing System

(GEOS) atmospheric general circulationmodel (AGCM).

In the control AGCM assimilation experiment (AGCM-

DAatmos) the AGCM, atmospheric data assimilation

system, and atmospheric observations were identical

to those used in MERRA-2, including the use of

observation-corrected precipitation at the land sur-

face and the aerosol analysis. The second AGCM

assimilation experiment (AGCM-DAland/atmos) was

the same as AGCM-DAatmos, except that the ASCAT

and SMOS near-surface soil moisture retrievals were

also assimilated into the land component of the AGCM.

The AGCM assimilation experiments covered 1 April–

31 August 2013, with the first two weeks excluded from

the evaluation against independent observations to allow

for assimilation spinup.

As will be discussed in section 2c, evaluation of

modeled soil moisture is difficult and generally re-

stricted to assessing temporal anomalies, and hence

requires long time series. To better examine how the

soil moisture assimilation affects the model soil mois-

ture, a second pair of experiments was then conducted

over a much longer time period, in which the soil

moisture observations were assimilated into an offline

(stand-alone) copy of the LSM used in the GEOS

AGCM. For these experiments, the GEOS LSM,

Catchment (Koster et al. 2000), was driven with sur-

face meteorological forcing data from MERRA-2,

using the same model settings and parameters as in

MERRA-2. In the control LSM experiment (LSM-

openloop) no land data assimilation was performed.

In the second LSM experiment (LSM-DAland), ASCAT

and SMOS near-surface soil moisture retrievals were

assimilated. The LSM experiments were run from

June 2010 to December 2016, the maximum period

for which both ASCAT and SMOS soil moisture re-

trievals were available when these experiments were

conducted.

b. The data assimilation systems

1) ATMOSPHERIC DATA ASSIMILATION

The atmospheric data assimilation system used in the

AGCM assimilation experiments is the GEOS, version

5.12.4, system as was used in MERRA-2. This system
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consists of the GEOS AGCM (Rienecker et al. 2008;

Molod et al. 2015) and the GSI 3D-Var analysis scheme

(Wu et al. 2002; Kleist et al. 2009), with the latter used to

assimilate the observations listed in Table 2 of Gelaro

et al. (2017). For the GEOS 3D-Var, each 6-h assimi-

lation cycle consists of three steps, as shown in the top

portion of Fig. 1. First is the predictor segment, which is

an AGCM forecast (with no assimilation) across the 6-h

assimilation window, producing the first-guess model

background. Second is the atmospheric analysis, in

which the background is compared to the observations,

and the assimilation increment is calculated. Third is the

corrector segment, during which the model is rewound,

and the 6-h forecast across the assimilation window is

repeated, with the assimilation update added incre-

mentally at each forecast step (Bloom et al. 1996), such

that the full increment calculated in step 2 has been

added by the end of the forecast.

These experiments also used the MERRA-2 precipi-

tation correction scheme, in which the model-generated

precipitation is corrected toward observations before

entering the land surface (Reichle et al. 2017b). In this

scheme, the precipitation corrections are tapered to-

ward the poles because of increased uncertainty in the

observations at high latitudes. Equatorward of 42.58,
the model-generated precipitation is fully corrected to

the observations, while poleward of 62.58, the model-

generated precipitation is retained as is, and between

these two latitudes the weighting applied to the ob-

servations is linearly tapered between the two ex-

tremes (these two latitude bands will be indicated on

all relevant maps of the results). As in MERRA-2, the

AGCM was run using a cubed-sphere horizontal grid at

approximately 0.58 resolution, with 72 hybrid-eta levels

from the surface to 0.01 hPa, the data assimilation was

performed on a 0.58 by 0.6258 latitude–longitude grid,

and the model output files were produced on the same

latitude–longitude grid.

2) LAND DATA ASSIMILATION

For both experiments with land assimilation, AGCM-

DAland/atmos and LSM-DAland, theGEOS landEnKF

(De Lannoy and Reichle 2016; Reichle et al. 2017c)

was used to assimilate the soil moisture observations.

This is a stochastic EnKF, and was run here in ‘‘1D’’

mode, in which all horizontal error correlations are

neglected, using a 3-h assimilation cycle and 20 en-

semble members. Only a single realization of the

land–atmosphere system is available from MERRA-2

(or from the MERRA-2 like system used for the AGCM-

DAland/atmos experiment), and following standard prac-

tice in offline land DA, the ensemble of land states for

the EnKF was created by randomly perturbing the
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atmospheric forcing and land state variables, using

the same perturbation settings as in Liu et al. (2011).

The model and assimilation were performed on the

same approximately 0.58 cubed-sphere grid used for

the AGCM in MERRA-2, and the output was written

on the same 0.58 by 0.6258 latitude–longitude grid used

for MERRA-2 output.

3) COUPLED LAND AND ATMOSPHERE DATA

ASSIMILATION

The coupled land–atmosphere data assimilation ex-

periment, AGCM-DAland/atmos, was run in weakly

coupled mode as outlined in Fig. 1. During each pre-

dictor segment of the atmospheric assimilation, the

surface meteorological forcing fields needed to drive

the land model are output and then used to force the

ensemble of LSMs, which provide the background first-

guess ensemble for the land EnKF. The land increments

produced by the EnKF are applied to the land surface

model ensemble members in the usual manner, and then

also applied to the land surfacemodel within theAGCM

during the corrector segment. Following initial testing,

the full land increment is added to the AGCM at the

nominal observation time (i.e., at the midpoint of each

3-h land DAwindow), rather than using the incremental

approach of the atmospheric updates.

4) ASSIMILATED SOIL MOISTURE OBSERVATIONS

FollowingDraper et al. (2012), soil moisture retrievals

from both active and passive sensors have been assimi-

lated, in this case from the C-band active ASCAT, and

the L-band passive SMOS instruments, respectively.

The assimilated ASCAT observations were version

WARP5.6.5, provided by the Vienna University of Tech-

nology as time series files (Wagner et al. 1999; Naeimi

et al. 2009). The soil moisture observations are re-

trieved from the ASCAT instruments on the MetOp-A

and MetOp-B satellites, and have a resolution of ap-

proximately 25 km, but are reported on an oversampled

12.5-km discrete global grid (DGG). Strictly speaking,

the retrieved variable for the ASCAT dataset is a

percentile degree of surface saturation (which must be

scaled by local porosity to obtain a volumetric soil

moisture), but we refer to it here as a ‘‘soil moisture’’ for

convenience. The processing and quality control applied

to the ASCAT observations were the same as in Draper

et al. (2012), except that the land-cover dataset used

to identify and screen regions of dense vegetation has

been updated to the Global Land Cover Character-

istics database, version 2.0 (USGS 2000), as was used

in MERRA-2. Based on this dataset, the ASCAT soil

moisture retrievals for locations identified as broad-

leaf evergreen were excluded from the assimilation.

The assimilated SMOS soil moisture retrievals were

extracted from the Soil Moisture Level 2 User Data

Product (SMUDP2), version 552, on a 15-km DGG

grid, and are the same data (extended to include 2016) that

were assimilated by De Lannoy and Reichle (2016).

The ASCAT and SMOS observations were regridded

onto the MERRA-2 output grid before being assimi-

lated, by assigning the average of all observations that

fall within each MERRA-2 grid cell to all land model

tiles within that cell. Figure 2 shows the number of

soil moisture observations assimilated in the 5-month

AGCM-DAland/atmos experiment. ASCAT observa-

tion were assimilated over 66% of the global land area,

with only regions of dense vegetation in the tropics and

Pacific Northwest, as well as a region surrounding the

Himalayas, having no observations. By contrast, the

FIG. 1. Schematic of the GEOS weakly coupled land–atmosphere

data assimilation system, showing the coupling of the GEOS

EnKF for land assimilation to the GEOS 3D-Var for atmo-

spheric assimilation.
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SMOS observations were assimilated over only 31% of

the global land area. The greater coverage for ASCAT

is due to there being two ASCAT instruments in orbit

(on MetOp-A and MetOp-B), and also due to differ-

ences in the quality control applied to each. In particu-

lar, the SMOS observations must be screened to remove

radio frequency interference contamination (Oliva et al.

2012), which is much less problematic for ASCAT. Also,

while there is no evidence that ASCAT has higher relative

skill than SMOS over dense vegetation, the screening for

dense vegetation applied to SMOS by De Lannoy and

Reichle (2016) was more stringent than that applied to

ASCAT by Draper et al. (2012).

Large biases are ubiquitous between observed and

modeled soil moisture (Reichle et al. 2004). Since there

is no established soil moisture truth against which to

anchor these biases, it is standard practice (Peters-

Lidard et al. 2011; Draper et al. 2012; de Rosnay et al.

2013; Fairbairn et al. 2015) when assimilating satellite

soil moisture observations to ‘‘bias correct’’ those

observations prior to assimilation by rescaling them to

locally match the model climatology (i.e., the mean,

variance, and possibly higher-order moments; Reichle

and Koster 2004). This rescaling removes the local

systematic differences between themodeled and observed

near-surface soil moisture, allowing the assimilation

to ingest unbiased information in the form of temporal

anomalies.

In these experiments, the bias correction was trained

on the maximum available time period, from June 2010

to December 2016. Specifically, for both experiments in

which soil moisture was assimilated (LSM-DAland and

AGCM-DAland/atmos), the assimilated soil moisture

observations were rescaled to match the cumulative

distribution function (CDF) of the ensemble-mean of

the LSM-openloop experiment, following Reichle and

Koster (2004).

In past soil moisture assimilation experiments with

the GEOS EnKF, including Draper et al. (2012) and

De Lannoy and Reichle (2016), the observation error

standard deviation has been specified as a global con-

stant in the observation climatology. While a prelimi-

nary study concluded that using a more realistic spatial

and/or temporal observation error distribution does

not improve the assimilation outcome (Draper and

Reichle 2018), we have nonetheless adopted a more

realistic approach here. Specifically, the observation

error standard deviation was specified as a fraction of

the local (grid cell) observation time series standard

deviation, using a fraction of 0.6 for both ASCAT and

SMOS. This value was chosen to give global observa-

tion error standard deviation distributions with median

values (and also first and third quartiles) very close to

that used in Draper et al. (2012) and De Lannoy and

Reichle (2016).

c. Evaluation data and metrics

For the LSM experiments, the impact on the model

soil moisture of assimilating the satellite soil moisture

has been evaluated by comparing the ensemble mean

from each experiment against in situ observations hos-

ted by the International Soil Moisture Network (ISMN;

Dorigo et al. 2011). For the AGCM assimilation ex-

periments the impact of assimilating the satellite soil

moisture observations has been evaluated by comparing

the AGCM output land surface fluxes, T2m
max, and 2-m

specific humidity (q2m) to independent observations

from the FLUXNET2015 (Fluxnet 2015), Global His-

torical Climatology Network (GHCN) (Menne et al.

2012a,b), and Hadley Centre Integrated Surface Data-

base (HadISD; Smith et al. 2011; Dunn et al. 2016) da-

tasets, respectively. The method used to process and

quality control each of these datasets is detailed in the

appendix, and the resulting observation coverage is

FIG. 2. Number of soil moisture observations assimilated in the 153 day AGCM-DAland/atmos experiment for

(a) ASCAT and (b) SMOS.
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shown in Fig. 3. In total, 215 (199) ISMN sites were used

to evaluate the near-surface (root zone) soil moisture,

most of which are in the United States (Fig. 3a). For the

surface latent and sensible heat fluxes, 29 sites were

used, 18 of which are in the Northern Hemisphere with

the other 11 being in Australia (Fig. 3b). The GHCN

T2m
max and HadISD q2m datasets are muchmore extensive

than ISMN and FLUXNET2015, although still far from

global. Figures 3c and 3d show the station density, in

terms of the number of stations contributing to the

gridcell average on a representative day (following the

processing of the station observations onto theMERRA-2

grid, as described in the appendix). In these figures, just

12% of the MERRA-2 grid cells are observed by GHCN,

while 8%are observed byHadISD. These two datasets are

based on observations from many of the same stations,

giving similar global coverage, with few observations

over Africa, South America, and much of Asia.

Comparing modeled and observed soil moisture esti-

mates is difficult. The soil moisture variable defined by a

given model is specific to the physics of that model, and

will not generally match the definition of an observed

soil moisture (Koster et al. 2009). There are also sig-

nificant representativity differences associated with the

differing spatial resolutions of point-based in situ ob-

servations and model grid-scale estimates. Hence, ob-

servations from individual in situ sensors are best used to

evaluate only the temporal behavior of the model. Here,

we measured the agreement between the LSM experi-

ments and in situ observations using anomaly correla-

tions. Unless otherwise stated, the anomaly correlation

Ranom has been calculated using anomalies from the

mean seasonal cycle, with the mean seasonal cycle es-

timated for a given day as the mean of the 31-day win-

dow surrounding that day of year, using data from all

years in the time series.

In experiments assimilating satellite soil moisture into

the Catchment LSM, Draper and Reichle (2015) found

that the model surface soil moisture skill gained from

the assimilation was split between improved subseasonal

anomalies (e.g., detection of surface wetting associ-

ated with an individual rain event) and improved in-

terannual anomalies (e.g., detection of an unusually

wet spring in a given year). Here, we again wish to

evaluate the impact of our soil moisture assimilation

at different time scales, however, the high quality

grid-scale in situ observations used for evaluation by

Draper and Reichle (2015) are available at only a few

sites, and not for root-zone soil moisture over long

time scales. We have instead relied on indirectly

evaluating the different time scales, by testing how the

anomaly correlations depend on the method used

to estimate the anomalies. By calculating anomalies

FIG. 3. Locations of the (a) ISMN in situ soil moisture stations

(legend refers to the first three letters of each network, as listed

in Table A2) and (b) FLUXNET2015 stations used in this study,

and density (stations per grid cell) on 1 Jun 2013 of the (c)GHCNT2m
max

and (d) HadISD q2m stations.
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from themean seasonal cycle, theRanommetric presented

above is sensitive to both short-lived subseasonal anom-

alies and longer-lived interannual anomalies. We

have also estimated the anomaly correlation using

anomalies with respect to a simple 31-day mov-

ing average. This metric, denoted as Ranom:subseas,

measures only the skill in estimating subseasonal

anomalies.

When comparing the evaluation metrics across ex-

periments, the significance of the difference in each

metric has been tested using two-sided tests, at a 10%

significance level. For the root-mean-square error

(RMSE) and the unbiased RMSE (ubRMSE, or error

standard deviation), the significance was tested using

a paired bootstrap test with 10 000 replicates. For

the Ranom, the significance was tested using a Fisher

Z transform, while for biases the significance was

tested using a 2-sample t test. In all cases, except the

bootstrap, an effective sample size was used to account

for serial autocorrelation in the time series being com-

pared, following the method of Draper et al. (2012). Fi-

nally, for comparisons to the sparse observation

networks (i.e., ISMN soil moisture and FLUX-

NET2015 fluxes), the significance of the mean dif-

ferences between the statistics across multiple sites

has been estimated from the results at each site after

accounting for dependence between closely located

sites, following the method of Draper et al. (2013).

On the other hand, for the denser observation net-

works (GHCN T2m
max and HadISD q2m) for which

maps of gridded statistics have been produced, we do

not perform significance tests on the global mean of

each statistic because of the difficulty of accounting

for the spatial correlations in densely sampled gridded

statistics.

3. Results and discussion

a. The LSM experiments

Scatterplots of the Ranom between the ISMN in situ

observations and the daily average ensemble mean soil

moisture from the LSM experiments confirm that as-

similating the satellite soil moisture slightly improved

the model soil moisture (Fig. 4). For the near-surface

soil moisture, the mean Ranom over all sites was slightly

increased from 0.54 for the LSM-openloop experiment

to 0.58 for the LSM-DAland experiment, with the soil

moisture assimilation increasing theRanom at 60% of the

sites. Likewise, for the root-zone soil moisture, themean

Ranom across all sites was slightly increased from 0.51 for

LSM-openloop to 0.54 for LSM-DAland, with the as-

similation again increasing theRanom at 60% of the sites.

While small, the increase in the meanRanom for both soil

layers was statistically significant. These small improve-

ments are also consistent with other studies assimilating

soil moisture retrievals into a land surface model forced

by observed precipitation (De Lannoy and Reichle 2016;

Carrera et al. 2019).

Recall from section 2c that the Ranom metric shown in

Fig. 4 measures anomalies at both subseasonal and in-

terannual time scales, and that if the anomalies are in-

stead calculated using a 31-day moving average, the

resulting anomaly correlation, Ranom:subseas, reflects only

skill in the estimation of subseasonal anomalies. In the

latter case, the soil moisture assimilation increased the

Ranom:subseas in the surface layer by a lesser amount than

FIG. 4. Scatterplots for LSM-DAland vs LSM-openloop Ranom for the (a) surface, and (b) root-zone soil moisture.

Colors indicate the networks, as indicated in Fig. 3a.
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for the Ranom, increasing it from 0.51 for LSM-openloop

to 0.52 for LSM-DAland, while actually degrading the

root-zone Ranom:subseas, from 0.48 for LSM-openloop to

0.46 for LSM-DAland. While the very small differences

between the metrics reported here makes any conclu-

sions uncertain, these results suggest that the benefit

gained by the root-zone soil moisture from the assimi-

lation occurred at time scales longer than 31 days.

b. The AGCM assimilation experiments

1) SOIL MOISTURE ASSIMILATION INCREMENTS

AND MODEL RESPONSE

The mean and standard deviation of the increments

added to the model by the soil moisture assimilation in

the AGCM-DAland/atmos experiment are shown in

Fig. 5 for each month of the experiment. In gen-

eral, the increments were relatively small, giving a

global land average of the temporal mean incre-

ments of20.01mm day21, and a global land average of

the temporal standard deviations of the increments of

1.4mm day21. Recall that the assimilated soil moisture

observations were bias corrected over a much longer

time period than the AGCM experiment period; hence

the nonzero mean increment obtained here is not un-

expected. Note also that the increments discussed here

(and in Fig. 5) are those output from the EnKF. How-

ever, the actual amount of moisture added or subtracted

in a given update cycle may differ from these values, as

the actual increments are sometimes limited to avoid

violating physical limitations in the model, such as the

minimum and maximum model soil moisture. The

largest (absolute) monthly mean increments (left col-

umn of Fig. 5) were around 2.0mm day21. The monthly

mean soil moisture increments were generally stronger

in the Northern Hemisphere, with a tendency to remove

moisture in the northernmid- and high latitudes in April

and May, before adding moisture in July. As expected,

the standard deviation of the increments generally

exceeded the mean increment across each month, with

maximum standard deviation values around 5.0mmday21.

For each month, the standard deviation of the daily in-

crements (right column of Fig. 5) was generally largest in

the more humid regions of the Northern Hemisphere

(and to a lesser extent in the tropics), where the soil

moisture itself typically has more variability.

For comparison, the adjustments made to the pre-

cipitation entering the land surface by the MERRA-2

precipitation correction schemewere larger than the soil

moisture increments, although of the same order of

magnitude. For example, for both AGCM assimilation

experiments, the global land average of the mean pre-

cipitation correction at each grid cell was 1.0mm day21,

while the average of the temporal standard deviations

was 5.1mm day21. At the same time, the spatial distri-

bution of the precipitation adjustments was very different

from that of the soil moisture assimilation increments,

with the largest precipitation adjustments occurring in

the tropics [e.g., see Fig. 3b of Reichle et al. (2017b)].

Figure 6 shows the mean and standard deviation of

the differences between the AGCM-DAland/atmos and

AGCM-DAatmos experiments for the near-surface

(0–5 cm) and root-zone (0–100 cm) soil moisture in

June 2013 (after 2months of assimilation). The differences

in the root-zone soil moisture were largely limited to the

Northern Hemisphere (Fig. 6c). In particular, the mean

monthly root-zone soil moisture was reduced by up to

0.06m3m23 in a region spanning from western Europe

across southern Russia, and in the eastern United States.

These same regions also experienced drying of the surface

soil layer (Fig. 6a). Some arid regions also experienced

relatively large wetting of the surface soil layer that is

not seen in the root-zone soil moisture. In particular,

over the Sahara the soil moisture assimilation in-

creased the mean monthly surface soil moisture by

around 0.05m3m23. In Fig. 5 the net (absolute) incre-

ments to the soil profile in this region were generally

below ,0.4mmday21. Unlike traditional layer-based

land surface models, the Catchment model simulates

soil moisture as an equilibrium profile and as deviations

from that profile (Koster et al. 2000), and examining the

increments added to each of these variables shows that

the increased surface soil moisture over the Sahara was

due to the addition of positivemeanmonthly increments

(of around 0.3–0.5mmday21) to the surface excess

variable in each month of the experiment.

Figure 7 shows similar maps for the model response to

the soil moisture assimilation in June, for a range of

near-surface fields, namely the latent heat flux, T2m
max,

q2m, and precipitation. For each of the variables plotted,

the standard deviation of the differences was generally

larger than the mean of the differences, indicating a

greater impact on the day-to-day variability than on the

monthly means (despite the soil moisture mean differ-

ence within each month exceeding the standard de-

viations in Fig. 6). With the exception of precipitation,

the mean monthly differences in Fig. 7 show a strong

visual correspondence to the mean monthly differences

in soil moisture in Fig. 6, suggesting a strong local re-

sponse in the boundary layer to the soil moisture changes

induced by the soil moisture assimilation. In general, the

regions where the AGCM-DAland/atmos experiment

was drier than AGCM-DAatmos in Fig. 6 also showed

the expected decrease in latent heat, and consequent

increase in T2m
max and decrease in q2m (with the opposite

pattern occurring where AGCM-DAland/atmos was
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FIG. 5. (left) Mean and (right) standard deviation over each month of the net soil moisture increments calculated by the soil moisture

assimilation in the AGCM-DAland/atmos experiment.
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wetter). Most notably, across southern Russia, where

the soil moisture has been decreased by up to

0.06m3m23, the latent heating was decreased by

around 20Wm22, resulting in a T2m
max increase of more

than 0.5K and a q2m reduction of more than 1 g kg21.

There was a slight decrease in precipitation across the

same region, although in general the response of

precipitation to the assimilation does not show a vi-

sual relationship to the local soil moisture changes,

and the precipitation mean difference maps are

dominated by the tropics, where precipitation itself is

much larger.

Finally, the relatively large response to the soil

moisture assimilation over the Sahara is concerning. In

such an arid environment, soil moisture is expected to

persist close to its lower limit, with evapotranspiration

remaining close to zero. Assimilating soil moisture

observations would not be expected to substantially

change this situation. And yet, in Fig. 7 the wetting of

the surface soil layer over the Sahara (by about 0.05m3m23,

or 2.5mm over the 5-cm surface layer) corresponds to

locally increased latent heating (by 5–15Wm22, equiva-

lent to 0.2–0.5mmday21), reducedT2m
max (by around 0.5K),

and increased q2m (by around 0.5gkg21), particularly in

the eastern Sahara. This issue will be further investigated

in section 3b(4).

2) EVALUATION OF SURFACE FLUXES

Assimilating soil moisture observations in AGCM-

DAland/atmos improved both the latent and sensible

heat fluxes, although by only a small amount compared

to the AGCM-DAatmos RMSE, as shown in Fig. 8.

For latent heating, the mean RMSE across the 29

FLUXNET2015 sites was significantly decreased from

34.2Wm22 for AGCM-DAatmos to 32.6Wm22 for

AGCM-DAland/atmos (for details of significance test-

ing, see section 2c). Likewise, for sensible heating the

mean RMSE was significantly reduced from 37.7Wm22

to 36.5Wm22. The middle and right columns of the

scatterplots in Fig. 8 show the contribution of the bias

and ubRMSE to the RMSE, demonstrating that the

improved RMSE in AGCM-DAland/atmos was due to

reduced biases over the experiment period rather than

reduced ubRMSE. That is, the improvement is largely in

the mean over the experiment period, rather than in the

day-to-day variability. For AGCM-DAatmos, the latent

heat was generally biased high and the sensible heat was

generally biased low during the AGCM-DAatmos

experiment, and the soil moisture assimilation re-

duced these biases at most locations. Averaged over

all sites, the net effect was to significantly reduce the

mean absolute bias over the experiment period, from

FIG. 6. (left) Mean and (right) standard deviation of the daily difference (AGCM-DAland/atmos minus

AGCM-DAatmos) over June 2013 between the (top) surface soil moisture and (bottom) root-zone soil

moisture.

JUNE 2019 DRAPER AND RE I CHLE 2173

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/6/2163/4881890/m
w

r-d-18-0393_1.pdf by N
O

AA C
entral Library user on 30 June 2020



FIG. 7. (left) Mean and (right) standard deviation of the daily difference (AGCM-DAland/atmos minus AGCM-DAatmos)

over June 2013 between the (from top to bottom) latent heat, daily T2m
max, q

2m, and precipitation.
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22.2Wm22 (AGCM-DAatmos) to 20.0Wm22 (AGCM-

DAland/atmos) for latent heating, and from 22.9 to

21.3Wm22 for sensible heating. By contrast, the assimi-

lation had a much smaller impact on the ubRMSE,

with the mean ubRMSE being reduced from 23.4 to

23.3Wm22 for latent heating, and from27.0 to 26.8Wm22

for sensible heating (with neither change being significant).

3) EVALUATION OF 2-M TEMPERATURE AND

SPECIFIC HUMIDITY

Figures 9a and 10a show the RMSE for the AGCM-

DAatmos experiment, calculated against the GHCN

and HadISD datasets, for T2m
max and q2m, respectively.

There is little regional correspondence between the

RMSE in the temperature and that in the humidity.

On the other hand, the biases over the AGCM-DAatmos

experiment (Figs. 9c and 10c) show a tendency toward

being too cool and wet in the high latitudes, with the

opposite pattern in the midlatitudes. For both T2m
max and

q2m, the soil moisture assimilation had a modest impact

on the RMSE (Figs. 9b and 10b). For T2m
max, the soil

moisture assimilation significantly changed the RMSE

at 35% of the evaluated model grid cells, and 65% of

the significant changes were toward improved RMSE

in AGCM-DAland/atmos. For q2m, 46% of the grid

cells were significantly changed, with 78% of those

significant changes being improvements. Globally

averaged over all available stations, the mean RMSE

was very slightly reduced by the soil moisture assim-

ilation for both variables, from 2.82 to 2.79K for T2m
max

and from 1.25 to 1.20 g kg21 for q2m. Locally, the

changes were much larger, and also showed similar

regional patterns of change in both T2m
max and q2m.

Of most note, the soil moisture assimilation in the

AGCM-DAland/atmos experiment reduced the RMSE

across a large area spanning from western Europe

across southern Russia and in a smaller region in

the south-central United States, by 0.1–0.4 K for

T2m
max (up to 20% of the AGCM-DAatmos value) and

0.1–0.5 g kg21 for q2m (up to 40% of the AGCM-

DAatmos value).

As with the surface flux evaluation, the improved

RMSE in the AGCM-DAland/atmos experiment was

largely due to reduced biases over the experiment period,

FIG. 8. Scatterplot of (left) RMSE, (middle) bias, and (right) ubRMSE between daily FLUXNET2015 observations and output from

the AGCM-DAatmos and AGCM-DAland/atmos experiments, for (top) latent heat and (bottom) sensible heat. Statistics are calculated

from 14 Apr to 31 Aug 2013, and data for the Southern Hemisphere (SH) and Northern Hemisphere (NH) are shown separately.
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for both T2m
max (cf. Figs. 9b,d) and q2m (cf. Figs. 10b,d). In

particular, the large region of reduced RMSEs across

southern Russia was due to reduced biases (in this case,

cool and wet biases). Note that there were also several

small patches of increased biases, for example over

Mongolia, Thailand, and southwest Mali. Globally

averaged, the mean absolute biases over the experi-

ment period are very slightly reduced by the soil

FIG. 9. T2m
max evaluation statistics vs GHCN observations for (left) AGCM-DAatmos, and (right) the difference in the statistics where

difference equals (AGCM-DAland/atmos statistic2AGCM-DAatmos statistic), for (top)RMSE, (middle) bias, and (bottom) ubRMSE.

All statistics are calculated from 14 Apr to 31 Aug 2013, and for clarity, the 0.58 by 0.6258 results have been coarsened up to a 2.08 3 2.58
grid before mapping.
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moisture assimilation, from 1.62 to 1.59K for T2m
max and

from 0.75 to 0.71 g kg21 for q2m. The ubRMSE the

changes induced by the soil moisture assimilation were

also small (Figs. 9f and 10f), and the mean ubRMSE was

also very slightly reduced, from 2.05 to 2.04K for T2m
max,

and from 0.91 to 0.88gkg21 for q2m.

Maps were also plotted for the RMSE, bias, and

ubRMSE within each individual calendar month of the

experiment period (not shown). These maps revealed

the same result as in Figs. 9 and 10—the RMSE was

reduced for each month largely because of reduced

monthly biases.

FIG. 10. As in Fig. 9, but for q2m evaluated against HadISD observations.
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4) TIME SERIES EXAMPLES

Here, example time series are presented at three lo-

cations to demonstrate the different ways in which the

soil moisture assimilation can affect the AGCM output,

and how the assimilation innovations relate back to the

information in the assimilated observations. The first

example, shown in Fig. 11, is in southwest Ukraine,

which is representative of the large region of improved

T2m
max and q2m spanning western Europe through southern

Russia in Figs. 9b and 10b. At this location, the T2m
max

RMSE was reduced from 2.32K for AGCM-DAatmos

to 1.78K for AGCM-DAland/atmos, while the q2m

RMSE was decreased from 1.24 to 0.91 g kg21. In both

cases, the reducedRMSE is due largely to a reduced bias

over the experiment period. For the T2m
max, this is shown

in Fig. 11d (the q2m time series are not shown for brev-

ity). Returning to the assimilation, by reducing the sur-

face and root-zone soil moisture (Figs. 11a,b) the soil

moisture assimilation shifted the surface flux partition

away from latent heating (Fig. 11c) and toward in-

creased sensible heating, reducing the cool bias over the

experiment (Fig. 11d). Additionally, Fig. 12 shows the

LSM-openloop and assimilated (bias corrected) soil

moisture observations (in this case, only from ASCAT)

at the same location over the full LSM experiment pe-

riod, together with theMERRA-2 andGHCNT2m
max. The

model was unusually wet in 2013 at the start of the

AGCM assimilation experiment, resulting in a large

positive soil moisture bias that persisted through the first

half of the experiment period. Coinciding with this wet

bias, the MERRA-2 T2m
max was also unusually cool re-

sulting in a larger than usual springtime T2m
max cool bias.

Taken together, Figs. 11 and 12 strongly suggest that the

model soil moisture was overestimated in the summer of

2013, resulting in an increased daytime cool bias, and

that the elevated soil moisture was correctly reduced

by the soil moisture assimilation, thus reducing the T2m
max

bias in the AGCM-DAland/atmos experiment.

Figures 13 and 14 show similar time series for a loca-

tion in the south-central United States, where the T2m
max

RMSE was reduced from 4.00K for AGCM-DAatmos

to 3.38K for AGCM-DAland/atmos. In this case, the

soil moisture assimilation decreased the warm T2m
max bias

over the AGCM assimilation experiment period (Fig. 13d)

by wetting the soil (Figs. 13a,b), leading to decreased

sensible heating and increased latent heating (Fig. 13c).

Over the longer period, comparing the soil moisture

bias (Fig. 14b) and the T2m
max model bias (Fig. 14d) shows

a clear pattern of opposing biases between the two. In

particular, during the summer months the model was

consistently drier than the assimilated soil moisture

FIG. 11. Time series of the (a) surface soil moisture for theAGCM

assimilation experiments and the assimilated soil moisture observa-

tions, (b) root-zone soil moisture from the AGCM assimilation ex-

periments, (c) latent heat from theAGCMassimilation experiments,

and (d) T2m
max bias compared to GHCN observations for the AGCM

assimilation experiments at (50.58N, 30.68E) in the Ukraine.
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observations (again only from ASCAT), and also

warmer than the GHCN T2m
max observations. Hence, the

AGCM assimilation experiment wetted the soil, reducing

this warm bias. However, another feature that stands out

in Fig. 14 is that the years with the greatest summertime

T2m
max biases do not correspond to the years with the

greatest soil moisture biases, highlighting that not allT2m
max

errors are associated with local soil moisture errors.

The final example, plotted in Figs. 15 and 16, is

in Algeria, on the edge of the Sahara. At this location

the T2m
max RMSE was increased from 2.05K for AGCM-

DAatmos to 2.31K for AGCM-DAland/atmos, and as

previously noted in section 3b(1) the AGCM-DAland/

atmos experiment induced unexpectedly large changes in

the latent heating,T2m
max, and q

2m acrossmuch of the Sahara.

These changes are evident in the time series in Fig. 15, in

FIG. 12. Time series of (a) surface soil moisture from LSM-openloop and the assimilated soil

moisture observations, (b) the difference between LSM-openloop and the assimilated soil

moisture, (c) the T2m
max from MERRA-2 and the GHCN observations, and (d) the difference

between the MERRA-2 and GHCN T2m
max, at (50.58N, 30.68E) in the Ukraine. The yellow

shading indicates the period of the AGCM assimilation experiments. For clarity, all data are

plotted as 30-day moving averages.
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which the assimilationwetted the surface and root-zone soil

layers (Fig. 15a), increasing the latent heating, and slightly

worsening the already cool T2m
max bias over the AGCM

assimilation experiment period (Fig. 15d). Note that while

the soil moisture in both layers was increased by a large

amount relative to its temporal variability, the absolute

change is rather small. For example, for the surface soil

moisture the increase in soilmoisture from the assimilation

is less than 0.04m3m23, or 2mm across the 5-cm layer.

The time series over the LSM experiment period

in Fig. 16 shows that both ASCAT and SMOS were

wetter than the model during the period of the AGCM

assimilation experiments because of a general tendency

to be wetter during the boreal summer. Also, in general,

at this location the satellite soil moisture time series look

unrealistic; they are noisy, ASCAT has unrealistic low

spikes [possibly associated with known issues with the

ASCAT retrieval algorithm in arid climates (Wagner

et al. 2003)], and the SMOS ascending and descending

time series often diverge. It will ultimately be very dif-

ficult for remote sensors to detect soil moisture changes

with a reasonable signal to noise ratio in regions where

the signal itself is so low (the range of the LSM-openloop

surface soil moisture in Fig. 16 is close to 0.05m3m23,

just above the typical target accuracy of 0.04m3m23

for satellite soil moisture).

Finally, while the model surface soil moisture was

increased by the soil moisture assimilation in Fig. 15a, it

remains lower than the assimilated observations (by

comparison, in Figs. 11a and 13a the model surface soil

moisture converged to close to the assimilated soil

moisture time series by mid-May). Because of this lack

of convergence, the soil moisture assimilation in the

AGCM-DAland/atmos experiment continued to add

small positive increments to the model soil moisture at

each model analysis cycle. At this site, and across the

Sahara, these small increments to the surface soil

moisture (of 0.3–0.5mmday21) in AGCM-DAland/

atmos induced a small increase in the model surface

soil moisture, and an increase in the latent heating

(of 5–15Wm22, equivalent to 0.2–0.5mmday21),

indicating that most of the water added to the soil

moisture in a given assimilation cycle has then been

immediately lost from the surface soil layer as evap-

oration (as would be expected in such an arid envi-

ronment). Hence, the assimilationwas unable to converge

on the observed surface soil moisture time series, and

continued to add positive increments.

4. Discussion

A weakly coupled land–atmosphere data assimila-

tion system has been introduced, and then applied to

FIG. 13. As in Fig. 11, but at (33.08N,292.58E) in the southeastern

United States.
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assimilate satellite soilmoisture fromSMOS andASCAT

together with the standard suite of atmospheric obser-

vations used in theMERRA-2 reanalyses. The benefit of

assimilating the satellite soil moisture was determined

by comparison to a control experiment in which only the

atmospheric observations were assimilated. These ex-

periments were conducted over one (boreal) warm

season, fromApril to August 2013. An additional pair of

experiments was also performed, from June 2010 to

December 2016, using an offline LSM, to confirm that

assimilating the soil moisture observations improved the

model soil moisture.

For the AGCM assimilation experiments, the benefit

of the soil moisture assimilation was tested through

comparison to independent observations of the land

surface sensible and latent heat fluxes, daily maximum

2-m temperatures, and 2-m specific humidity. There were

just 29 sites with flux data available from the FLUX-

NET2015 dataset during the experiment period, and at

these sites the soil moisture assimilation significantly re-

duced the mean RMSE from 34.2 to 32.6Wm22 for latent

heating, and from 37.7 to 36.5Wm22 for sensible heating.

The 2-m station-based GHCN and HadISD datasets have

much more extensive coverage, although both still only

FIG. 14. As in Fig. 12, but at (33.08N, 292.58E) in the southeastern United States.
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sample around 10% of the MERRA-2 grid cells

(Fig. 3c). Compared to the GHCN T2m
max and HadISD

q2m, the soil moisture assimilation slightly reduced

the mean RMSE from 2.81 to 2.78 K, and from 1.25

to 1.20 g kg21, respectively.

While the mean improvements gained from the as-

similation averaged across the FLUXNET2015, GHCN,

and HadISD dataset locations are small, they are posi-

tive in each case. Additionally, there are regions where

the local benefits are much larger. The most prominent

example of this is the large region spanning from west-

ern Europe across southern Russia, in which the soil

moisture assimilation improved the T2m
max RMSE by up

0.4K (Fig. 9) and the q2m RMSE by up to 0.5 g kg21

(Fig. 10). Inspection of time series within this region

showed that the reduced 2-m errors were due to the soil

moisture assimilation identifying, and then correcting,

an abnormal wet bias in the model soil moisture at the

start of the experiment time period. Large global im-

provements in the 2-m temperature and humidity were

not expected, since the atmospheric boundary layer is

only sensitive to soil moisture within a certain soil

moisture range. On a similar note, we also do not expect

all of the boundary layer errors to be eliminated by

improving the model soil moisture. For example in

Fig. 13 the model T2m
max retains most of the bias from the

AGCM-DAatmos experiment, even after the AGCM-

DAland/atmos experiment induced a relatively large

change in the model soil moisture.

The intention of this study was to test the value of

the soil moisture assimilation for future reanalysis,

and a key detail of the experiments conducted here is

that the assimilated soil moisture observations were

bias corrected to match the model near-surface soil

moisture using the maximum time period with avail-

able observations. With this approach, the assimilated

observations still include any interannual soil mois-

ture anomalies. This detail is important, as the model

benefitted most from the soil moisture assimilation at

time scales exceeding one month. First, the model

root-zone soil moisture anomaly correlations were

increased by assimilating the soil moisture observa-

tions only when the anomalies included interannual

variability (Ranom). If the anomalies instead accounted

for only the current year subseasonal variability,

then the root-zone anomaly correlations (Ranom:subseas)

were slightly decreased by the assimilation. This re-

sult suggests that the benefit to the root-zone soil

moisture from the satellite soil moisture assimilation

(as measured by Ranom) was in the simulation of

events longer than one month. Second, even though

the assimilation induced larger changes in the day-

to-day variability of the latent heating and 2-m var-

iables than in the monthly mean values (Fig. 7),

comparison to independent evaluating datasets showed

that the improved RMSE from the soil moisture

FIG. 15. As in Fig. 11, but at (9.48N, 24.58E) in Algeria.
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assimilation was largely due to improved biases over

monthly plus time scales, rather than due to improved

ubRMSE.

Recall that in MERRA-2 and in the experiments

presented in this study, the model-generated precipi-

tation was corrected toward observations before en-

tering the AGCM land surface. In line with the results

of Liu et al. (2011), in this study the already high

quality soil moisture obtained with the precipitation

corrections was further improved (although by a small

amount) by assimilating soil moisture observations.

At the same time, some of the greatest improvements

in the T2m
max and q2m occurred north of 42.58 N, where

the model precipitation was only partially corrected

toward the observations. It would not be unexpected

that the greatest benefit from assimilating soil mois-

ture occurs in regions where the observed precipita-

tion is not fully weighted in the correction algorithm.

Likewise, larger gains from soil moisture assimilation

may also occur where the precipitation is fully cor-

rected to observations, but the observed precipitation

itself is less certain (e.g., over Africa, where the rain

gauge network is relatively sparse). However, the

evaluation of the assimilation output is also more

FIG. 16. As in Fig. 12, but at (9.48N, 24.58E) in Algeria.
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difficult in these regions because of the same scarcity

of ground-based data.

To maximize the potential benefit of assimilating soil

moisture, the bias correction of the assimilated obser-

vations will require great care. An unresolved difficulty

is that current bias correction strategies require an es-

timate of the model soil moisture climatology be avail-

able prior to commencing the reanalysis. Since precipitation

is the main driver of soil moisture, in regions where the

model precipitation will be corrected to observations,

a reasonable estimate of the future reanalysis soil

moisture climatology can be obtained by forcing the

LSM in offline mode with reasonable atmospheric

fields and the precipitation observations to be used in

the reanalyses. However, where the precipitation

observations will not be used (which is also where the

soil moisture assimilation may offer the greatest

benefit), an alternative bias correction approach will

be needed. In this case, it would be sufficient to put the

first year of each satellite data record aside for making

an initial estimate of the bias correction (Draper and

Reichle 2015), which could then be refined as more

data become available.

Finally, as previously noted, the soil moisture assimi-

lation degraded the model over the Sahara (and other

arid regions), by persistently increasing the surface soil

moisture. The added moisture was then evaporated to

the atmosphere rather than being retained in the soil.

Since in arid conditions the satellite soil moisture has a

low signal-to-noise ratio and is unlikely to benefit the

model, an additional quality control is recommended to

screen out the soil moisture observations based on a

minimum criterion for the local soil moisture time series

standard deviation. Likewise, additional monitoring is

recommended to identify and address serially correlated

observation-minus-forecast residuals or assimilation

increments, which indicate that the assimilation is un-

able to sustainably correct the model toward the ob-

servations. Serially correlated increments can result in

a relatively large moisture increment being gradually

added or subtracted over time. While for assimilation

into an offline LSM, the impact of this issue would be

locally restricted (since LSMs typically do not include

lateral flow), for assimilation into a full AGCM, the

addition or subtraction of a large water volume could

potentially impact the global circulation, as likely

occurred in response to the relatively large increase in

latent heating over the Sahara in this study.

5. Conclusions and recommendations

The experiments presented here demonstrated that

assimilating satellite soil moisture retrievals into a

global atmospheric reanalysis can improve the model

representation of soil moisture, leading to improved

latent and sensible heating, and hence improved daily

maximum temperature and specific humidity in the

boundary layer. While the globally averaged improve-

ments were small, the model benefits were more pro-

nounced locally. Additionally, while the model changes

in latent heat, T2m
max, and q2m induced by the assimilation

show greater variability at the day-to-day time scale, the

model improvements (based on comparison to inde-

pendent observations) are dominated by improvements

at monthly and longer time scales. An obvious extension

to this study would be to use the improved soil moisture

estimates from the weakly coupled assimilation system

to initialize short-and medium-range weather forecasts.

It if left to future work to determine whether this can

improve the forecast skill.

Evaluation of gridded soil moisture, such as from an

AGCM, is extremely difficult because of the represen-

tativity differences between in situ and modeled soil

moisture, and the limited global coverage of in situ

networks (demonstrated in Fig. 3a). It is quite possible

that evaluations based on in situ soil moisture observa-

tions, such as was presented in section 3a, underestimate

the true impact of assimilating soil moisture. By com-

parison, the available network of station-based 2-m

observations is much more globally extensive (al-

though still far from global; Figs. 3c,d), and represen-

tativity differences between the modeled and observed

2-m temperature and humidity are also much smaller.

The conclusion from this study that the satellite soil

moisture assimilation improved the overall fit between

the modeled and observed T2m
max and q2m then provides

an important independent confirmation that soil mois-

ture assimilation can improve modeled soil moisture.

Looking ahead, we recommend that satellite soil

moisture information be assimilated into future atmo-

spheric reanalyses, including the follow-on reanalyses

from MERRA-2. The GEOS 3D-Var atmospheric data

assimilation system used here was updated to a Hybrid

3D-Var scheme in May 2016, and then to a 4D-Var

scheme in January 2017 (Todling and El Akkraoui

2018), and the coupled land–atmosphere data assimila-

tion system needs to be similarly updated. This also

presents an opportunity to improve the land EnKF by

better integrating the land ensemble used in the land

update with the AGCM ensemble used in the Hybrid

4D-Var data assimilation.
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APPENDIX

Preparation of Observation Data Used for
Evaluation

To evaluate the model soil moisture, hourly ISMN

observations were downloaded, retaining only nonzero

data that are classified as ‘‘good’’ (Dorigo et al. 2013).

TABLE A1. ISMN contributing networks used in this study.

Network Citation or website

COSMOS Zreda et al. (2012)

DAHRA Tagesson et al. (2015)

HOBE Bircher et al. (2012)

REMEDHUS http://campus.usal.es/;hidrus/

(accessed 5 Feb 2018)

SCAN https://www.wcc.nrcs.usda.gov/scan/

(accessed 5 Feb 2018)

SMOSMANIA Albergel et al. (2008)

SNOTEL https://www.wcc.nrcs.usda.gov/snow/

(accessed 5 Feb 2018)

TERENO Zacharias et al. (2011)

USCRN Bell et al. (2013)

WSMN http://www.aber.ac.uk/wsmn

(accessed 5 Feb 2018)

TABLE A2. FLUXNET2015 sites used in this study.

FLUXNET-ID [lat (8N), lon (8E)] Data years used Data DOI

AU-ASM (222.2830, 133.2490) 2013 10.18140/FLX/1440194

AU-Cpr (234.0021, 140.5891) 2013 10.18140/FLX/1440195

AU-Cum (233.6152, 150.7236) 2013 10.18140/FLX/1440196

AU-DaP (214.0633, 131.3181) 2013 10.18140/FLX/1440123

AU-Dry (215.2588, 132.3706) 2013 10.18140/FLX/1440197

AU-Emr (223.8587, 148.4746) 2013 10.18140/FLX/1440198

AU-GWW (230.1913, 120.6541) 2013 10.18140/FLX/1440200

AU-RDF (214.5636, 132.4776) 2013 10.18140/FLX/1440201

AU-Stp (217.1507, 133.3502) 2013 10.18140/FLX/1440204

AU-Whr (236.6732, 145.0294) 2013 10.18140/FLX/1440206

AU-Ync (234.9893, 146.2907) 2013 10.18140/FLX/1440208

BE-Bra (51.3076, 4.5198) 2013 10.18140/FLX/1440128

BE-Lon (50.5516, 4.7461) 2013 10.18140/FLX/1440129

BE-Vie (50.3050, 5.9981) 2013 10.18140/FLX/1440130

CZ-wet (49.0247, 14.7704) 2013 10.18140/FLX/1440145

DE-Geb (51.1001, 10.9143) 2013 10.18140/FLX/1440146

DE-RuR (50.6219, 6.3041) 2013 10.18140/FLX/1440215

DE-Tha (50.9624, 13.5652) 2013 10.18140/FLX/1440152

NL-Loo (52.1666, 5.7436) 2013 10.18140/FLX/1440178

RU-Cok (70.8291, 147.4943) 2013 10.18140/FLX/1440182

RU-Fyo (56.4615, 32.9221) 2013 10.18140/FLX/1440183

U.S.-MMS (39.3232, 286.4131) 2013 10.18140/FLX/1440083

U.S.-Ne3 (41.1797, 296.4397) 2013 10.18140/FLX/1440086

U.S.-Prr (65.1237, 2147.4876) 2013 10.18140/FLX/1440113

U.S.-SRG (31.7894, 2110.8277) 2013 10.18140/FLX/1440114

U.S.-Tw3 (38.1159, 2121.6467) 2013 10.18140/FLX/1440110

U.S.-Var (38.4133, 2120.9507) 2013 10.18140/FLX/1440094

U.S.-WCr (45.8059, 290.0799) 2013 10.18140/FLX/1440095

U.S.-Wkg (31.7365, 2109.9419) 2013 10.18140/FLX/1440096

JUNE 2019 DRAPER AND RE I CHLE 2185

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/6/2163/4881890/m
w

r-d-18-0393_1.pdf by N
O

AA C
entral Library user on 30 June 2020

http://campus.usal.es/~hidrus/
https://www.wcc.nrcs.usda.gov/scan/
https://www.wcc.nrcs.usda.gov/snow/
http://www.aber.ac.uk/wsmn


These hourly observations were averaged up to daily

time series, and all time series with less than 1460 data

days within the June 2010 to December 2016 LSM ex-

periment period were discarded. The measurement

depths that best represent the surface and root-zone soil

moisture were then selected. For the surface soil mois-

ture, we chose the time series within each MERRA-2

grid cell that is closest to the surface, but no deeper than

10 cm. For the root-zone soil moisture, we chose the

time series closest to 34-cm depth, and between 10 and

60 cm deep. In instances where there were multiple

sensors at the same depth within a grid cell, the time

series with the highest anomaly correlation with the

LSM-openloop soil moisture was selected (assuming

that this minimizes the representativity differences be-

tween the chosen in situ and modeled soil moisture).

Finally, all time series at locations with no ASCAT or

SMOS soil moisture observations, or where the anomaly

correlation with LSM-openloop was below 0.2 were

also discarded. The latter threshold serves as additional

quality control for ISMN soil moisture measurements

that are subject to otherwise undetected measurement

errors or are not representative of the gridcell-scale

model estimates. Table A1 lists the contributing ISMN

networks used, together with the relevant citations.

To evaluate the model latent and sensible heat fluxes,

the FLUXNET2015Tier 1 hourly datawere downloaded,

and the energy-balance closure-corrected hourly latent

and sensible heat fluxes were averaged up to daily

time series, for all days with less than 10% gap-filled

data. All sites with at least 100 data days during the

(153 day) AGCM assimilation experiment period were

then retained. Where there was more than one time

series within a model grid cell, only the site with the

lowest RMSE compared to the AGCM-DAatmos ex-

periment was retained. Finally, sites at which there were

no ASCAT or SMOS observations available for assimi-

lation were discarded. The final list of stations used, to-

gether with the relevant citations, are shown in Table A2.

To evaluate the model T2m
max, version 3.24 of the global

GHCN T2m
max observations were downloaded, and all

data failing the GHCN quality assurance checks were

discarded. We then created a daily gridded dataset on

the MERRA-2 output grid by averaging all available

observations within each model grid cell on each day.

Grid cells with less than 100 data days were then

discarded. For the q2m, version 3.0.0.2018f, of the hourly

station-based HadISD data were downloaded, and daily

values were estimated for all stations on each day with at

least three observations. The daily time series were then

processed onto the model grid cells using the same

process as for the GHCN T2m
max data. Daily estimates of

the model q2m were specially produced for comparison

to HadISD using only the hours at which the HadISD

observations were available.
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